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The Mie and Rayleigh-Debye theories of homogeneous spheres are reformulated in terms of Gegen-
bauer functions to allow a comparison between the two treatments in the Rayleigh-Debye limit. This
leads to reduced Mie equations that are valid for all particle sizes, whereas the Rayleigh-Debye equa-
tions are restricted to an outer size parameter a <1. The application of Gegenbauer analysis of experi-
mental patterns is discussed and the possibility of pattern inversion is examined.
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I. INTRODUCTION

Two fundamental challenges exist in the study of light
scattering from particulate matter. These are classified in
the following ways.

(a) The direct problem. How can the scattering pattern
be calculated when the properties of the particle are
known?

(b) The inverse problem. How may the characteristics
of the particle be determined when the scattering pattern
is known?

The first type of problem has led to a considerable
body of theoretical work over the years, and has resulted
in rigorous solutions being developed for a few particle
geometries that include spheres [1], circular cylinders [2],
elliptical cylinders [3], prolate spheroids, and oblate
spheroids [4]. A general computational method for any
geometry, using an expansion of vector spherical waves,
has even been proposed [5], but doubts about the proper
convergence of the solutions have since been raised [6].
Less rigorous solutions have also been derived based on
the Rayleigh-Debye theory of scattering. These are valid
when the refractive indices of the particle and the am-
bient medium are nearly equal [7,8]. The treatment can
be applied to all particle shapes; however, as will be
shown in the present paper, an upper limit exists for the
particle dimensions.

No significant progress has been made on the inverse
problem for wide angle scattering. Since this case is of
prime importance to experimentalists, they have resorted
to applying heuristic techniques for particle characteriza-
tion. Examples of such procedures are (i) the use of sets
of calibration particles to construct instrument response
curves, obtained by collecting most or part of the scat-
tered light; and (ii) the matching of experimental scatter-
ing to a stored theoretical data base. The former method
clearly restricts applications to particles of the same ma-
terial as the reference particles, and ignores the possibili-
ty of an oscillatory response at sizes between the refer-
ence set. The latter technique, while not suffering the
above difficulties, requires extensive prior computation of
patterns and large amounts of computer memory, and
raises the question of how the best fit solutions are to be
recognized.
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This paper will attempt, in part, to rectify this serious
omission from the body of knowledge by investigating a
procedure which is capable of allowing partial, and prob-
ably complete, inversion of experimental scattering pat-
terns of spheres. The technique introduced here is the
Gegenbauer analysis of scattering patterns. Optimum
conditions for the application of the method are achieved
when nearly complete quasicontinuous scattering pat-
terns from spheres are available over 180° in a fixed plane
of detection. This detector arrangement is fairly stan-
dard for wide angle scattering instruments. Data are,
however, missing near scattering angles of 0° and 180° in
such systems at the positions of the entrance and exit
apertures of the irradiating laser beam. A remarkable
feature of the analysis is that a procedure exists which al-
lows the missing data to be almost completely restored.
The processed data then give an immediate measure of
particle radius, and offer a possible strategy for determin-
ing the particle’s refractive index. Clearly any analysis
capable of exhibiting these features is worthy of study.

To illustrate the power of the technique, we will refor-
mulate the Mie and Rayleigh-Debye theories of spheres
in terms of Gegenbauer polynomials. A theoretical com-
parison between the two treatments is then possible when
the Rayleigh-Debye limit is imposed on the Mie theory.
The feasibility of inverting the experimental patterns for
Rayleigh-Debye spheres will be illustrated, and the case
for the more general spheres will be discussed.

II. GEGENBAUER ANALYSIS

Gegenbauer polynomials T5(z) of degree 8 and order n
belong to a particular class of solution of the hyper-
geometric function F(a,blc|x), and may be defined by
(9]

1—z
2 ’
(1)
where I'(x) represents the gamma function. The choice
of a=—n(n=0,1,2,...) ensures that the series ter-

minates to generate a polynomial. In general, 8 is an ar-
bitrary parameter, but our interest will be confined to
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positive integer values S=k, and in particular to k=1.
The association of these functions with the light scatter-
ing patterns of spheres arises since the angular functions
7,(cos?) and 7,(cosd) appearing in the Mie theory are
expandable in terms of Gegenbauer functions. However,
unlike the 7,(z) and 7,(z) functions, Gegenbauer func-
tions of a fixed degree constitute a complete orthogonal
set with respect to a weight function (1 —z2)*:

1 _ L 2\kk k — 2(" +2k )'
f_1<1 I TRz = e i, . @)
Other useful properties of Gegenbauer functions are
given by Morse and Feshbach [9].

A consequence of the orthogonality and completeness
is that any piecewise continuous function F(z) of z in the
range —1 =<z =1 may be written as a Gegenbauer series.
Hence

0

F(z2)=3 ¢,TXz2), 3)
n=0
where
_@nt2k+nl
n 2(n+2k ) f_l(l 22 F(2)THz)dz .  (4)

These two relations may be regarded as a transform pair
c,=G[F(2)],
F(2)=G '[¢,],

similar to that of discrete Fourier series. The calculation
of ¢, as a function of order is therefore taken as the
definition of the discrete Gegenbauer transform of F(z).
The presentation of the coefficients ¢, as a discrete
Gegenbauer spectrum of F(z) is then, in all respects,
representative of the initial function.

As both the amplitude and irradiance functions of the
scattering patterns can be represented by Gegenbauer
series in z=cosd, where ¢ is the scattering angle, we
have the basis of a method for theoretical and experimen-
tal analysis.

III. NOTATION AND CONVENTIONS

The scattering configuration which will be considered
is given in Fig. 1. This shows a spherical particle of re-
fractive index m relative to the ambient medium, and a
radius @ which is irradiated by a collimated mono-
chromatic beam traveling along the z axis. The incident
beam is plane polarized in either the x or y directions
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FIG. 1. Scattering geometry.
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with electric fields

X

xEOei(kZ*(ot) , (5)

) W

Ei(r,t)=

y

in which the propagation constant kK =27 /A and wave-
length A are for the ambient medium. Scattering is as-
sumed to be detected in the yz plane. Two solutions
therefore exist for the scattered electric field at angle ,
corresponding to the two directions of incident polariza-
tion. For perpendicular polarization E/ the scattering
amplitude is S, (¢}), while for parallel polarization E}ﬁ it is
S (). These are defined by specifying the scattered elec-

tric field at a distance » from the particle by

o ikr ’5¢Sl(19)
Ef=—i—
T BoX | —ays,(9) . ©)
The associated irradiance functions are
gs="lo IS, (D% p=1 @)
P g2,2 0P W p=Llor|

for an incident beam of irradiance H,,.

When the specimen is a homogeneous sphere, the
scattering functions depend on only two factors, the
external and internal size parameters a =ka and B=ma,
respectively. Our analysis, however, indicates that it is
convenient to introduce a third factor—the effective size
parameter

y=(m*—1)a/2. (8)

When the relative refractive index approaches unity, this
parameter becomes equal to the difference of the optical
phase shifts in the internal and external media when a
distance a is traversed. The usual Rayleigh-Debye condi-
tion 2(m —1)a <<1 is therefore equivalent to 2y <<1. A
specimen for which the condition is satisfied will be re-
ferred to as a Rayleigh-Debye (RD) sphere.

IV. MIE SCATTERING

Mie scattering is derived by the rigorous application of
electromagnetic theory to spheres. For perpendicular
and parallel polarization, the scattering amplitudes are
(10]

_ - (2n+1)

Sl(z)—né1 PIPEST) {a,m,(z)+b,1,(2)} , (9a)
_ < (2n+1)

S”(Z)_n§1 —~——n(n+1){anrn(z)+b,,7r,,(z)} , (9b)

where a, and b, are the electric and magnetic multipole
coefficients and z=cosd. The angular functions
m,(cos?) and 7,(cosd) are defined in terms of the associ-
ated Legendre functions, but may be expressed as first de-
gree Gegenbauer polynomials T}(z):

Pl(z)
m,(z

n = (1___22)1/2 (10a)

:Tnl—l(z) ’
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(12129 (p1
7,(2) (1—2z%) dz[P,,(z)}

=ﬁ[n2Tnl(z)——(n+1)2T,}_2(z)} . (10b)
Substitution into the scattering functions then yields
S,(z)=3 (¢, )pT,,l(z) , (11)
n=0
where
(c.) =—" 2n +3 a . N +3
"on+l Tt (n4+)(n42) T m42 TR
(12a)
()= n_, 2n +3 _n+3a
P p 1t (D +2) " p27m 2
(12b)

Alternative expressions can be derived for the scattering
functions in terms of Gegenbauer polynomials of degree
other than k =1, but these lead to more complicated for-
mulas for (c,),. In the case of k =0, the Gegenbauer po-
lynomials reduce to the case of Legendre polynomials
T%(z)=P,(z), and the scattering function becomes
Legendre series by the substitution of

[n/2]
THz)=3 (2n+1—4r)T)_,,(2)
r=0
into Eq. (10), while, for k =2,
1
T,}(Z)=6;+—3){T3(Z)“T3,Z(Z)}
should be used.

The multipole coefficients are related to the particle
properties through the relations

a,=1{1—e")=—ie""sinu,, , . (13a)
bn=%{1—ei2v"}=——iew"sinvn (13b)
and

¥, (B, (@) —mi, (B, (a)

tanu, =—, , ’ (14a)
U, (B, (a)—my, (B)x,(a)
W (B, (@)=, (B, ()

tanv _ m¥u (B, (@) 4, (B, (14b)

" my, (B, (@) — b, (BX, ()

in which ¢,(a) and x,(a) are Riccati-Bessel functions.
When the sphere is nonabsorbing, m and 3 are both real,
giving real values for u, and v,, but for an absorbing
sphere m and B are complex leading to values of u, and
v, which are also complex. In the analysis here it will
generally be assumed that the particle is nonabsorbing.
The behavior of ¢, (x) and x,(x) when x is fixed and n
varies is of interest as such functions determine the mul-
tipole coefficients and hence the magnitudes of the
scattering coefficients (c,),. When x is large, ¢,(x) and
X, (x) initially oscillate with a period ~4 as the order in-
creases. But for n >x —2, the functions are monotonic;

I. K. LUDLOW AND J. EVERITT 51

¥,(x) decreases rapidly from a positive maximum to
zero, and Y, (x) becomes increasingly negative from zero.
Thus, for large spheres a>2, the magnitudes of the
coefficients of the Gegenbauer series are expected to
change erratically with order when n <a—2. This is fol-
lowed by a region a—2<n <a+2 over which the
coefficients reduce rapidly in magnitude predominantly
due to the factor ¥,(a)/x,(a) which can be separated in
Eq. (14). Asymptotic forms of 9, (x) and ¥, (x) which are
valid for n > a—1/2 may be used to obtain

tanunze(2”+1)<taﬂh§'§)l(1+2 /a)sinh —%} (15a)

Kk+A
tanvnze(2n+l)(tanh§—§) E%QM% ] , (15b)

in which coshé=(2n+1)/2a, k=m[y,_(B)/¢¥,(B)]
—e "5 and A=(2y /a)sinhE—(y /a?).

As the arguments of the exponential factors are nega-
tive, the angles u, and v, become small when n >a+2.
By Eqgs. (13), we then have a,, b,, and (¢, ), —0.

The Gegenbauer series for the scattered amplitude may
therefore be terminated at n =a+2. In the case of small
spheres a <2, ¥,(x), and x,(x) are monotonic for all or-
ders, and a set of reducing coefficients (c,, )p is obtained.

The cutoff condition

neo=~a+2 (16)

for scattering amplitudes functions therefore appears to
be generally valid.

V. RAYLEIGH-DEBYE SCATTERING

The physical basis of this theory is the condition that
the refractive indices of the particle and the medium are
nearly equal. As a consequence, refraction of the in-
cident beam can be neglected, and the internal field of the
particle is the same as the incident field. The internal
field then induces dipoles throughout the specimen, and
these radiate to generate the scattered field. The validity
of the treatment is limited to particles with small optical
thickness  relative to  the ambient medium
2(m —1)a=2y 1.

For spherical particles, the scattering amplitudes are
given by

Sl . 61013 Ji(u) 1 (17a)
=—i X
Su 3a+2y) u cosd , (17b)

where u =2asin(4#/2) and j,(u) is the spherical Bessel
function of order 1. However, these forms are unsuitable
for comparison with the Mie theory, but, due to the com-
pleteness of Gegenbauer functions, they can be reex-
pressed as Gegenbauer series. Conversion is possible by
using the relation

o

=_l§' > (2n+3)j3+1(a)T,,‘(cosﬂ) R (18)
u a” ,=o

Ji(u)
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which allows Eq. (17a) to be converted directly. Equa-
tion (17b) requires an additional step due to the presence
of cos(4#). This factor may be incorporated by the appli-
cation of

Q2n+3):zTHz)=(n+ 1T}, (2)+(n+2)T}_,(z), (19

where z=cos(¢}). The resulting expressions then have

the desired forms

0

S, = go(d,, ), Talz) , (20)
where

- i6ya .2
(d,), ——L—(3a+27/)(2n+3)j,,+,(a), (21a)
(dy)y= ==X (ni2a)+(n+3)j2,,(@)] . @1b)

(3a+2y)

VI. REDUCED MIE EQUATION

A comparison of Egs. (11) and (20) now allows an ex-
amination to be made of the conditions required for the
Mie formula to reduce to those given by Rayleigh-Debye
theory. The most obvious difference is that (c,), are
complex, while (d, ), are imaginary. This can easily be
dealt with by requiring u, and v, in Egs. (14) to be small,
then a, ——iu,, b, ——iv,, and

n+1 (n +1)n +2)

_n+3
n—+2 Up+2

) (22a)

(¢, )y—> — n 2n +3 v
I n 1T (1) +2) n !

n+3 ]

L (22b)

Contributions from the real parts of @, and b, will be less
than 5% of the imaginary parts for an upper limit on u,
and v, of 0.05. Furthermore, the forms of (d,), en-
courage us to search for expressions of u#,, and v, in terms
of squares of spherical Bessel functlons jXa) or Yi(a
This leads us to apply the multiplication theorem of
Bessel functions,
o0 k

(B =1, (ma)=m"*1 3 ( 1)k3];—'¢,,+k<a> , (23

k=0 :
which, it should be noted, is valid for all values of a and
v. Substituting into Eq (14) then yields

(24a)
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© (_ )k
3 I fia
tanv :0 __' k , (24b)
> Sk
k=0 -
as shown in Appendix A, with the notation
f,f‘(a)=1//,, +rk—1(@Y, (@)=, (@), _(a), (25a)
f:<a)=f:(a)+3’i¢n+k_,(a)¢;,<a> , (25b)
=Y 1x (@)X, (@)=Y, 1 (a)x, —(a), (26a)
§f<a)=gn"(a)+—a—xpn+k_,(a)x;,(a) : (26b)

The bar is used here only to distinguish between the two
types of expression. These functions have limiting forms

2k a2 Tkt
2n+1)M2n +2k+ 1) ’
2k(n+1)

2n+1)M(2n +2k— 1)

2n—1)1 o
(2n+2k—1)1 ’
2kn(2n—1)1 ok -2
2n+2k—1)1 ’
when a—0, and

FRa)— fKa)—sin(km/2) ,

fHa)—

2n+k—1

I

ff(a)-»
gMa)——

gHa)—

ga)—gla)—>—cos(km/2) ,

when a— . Thus the functions are generally well
behaved over the entire range of a, and have magmtude
limits of ==+1. One exception is g,,(a) which has a sim-
ple pole at «=0. The functions f!(a) and g!(a) are
needed in the present analysis and are shown in Figs.
2-5. From the variation of f,}(a) with size parameter, it
can be seen that the function is always positive with
fXa)=0 when a=0, and f,)(a)—1 when a@>>n. Simi-
lar plots for g!(a) are always negative with g)(a)=0
when a=0, and g,,l(a)—>0 for a>>n. Alternative
displays of the functions against order, Figs. 4 and 5, re-
veal for f)(a) the existence of a pedestal region which
decreases irregularly from =1 at n =0 before reaching a

1.4 4
1.2 ~
1.0 4§
0.8
0.6 4
0.4
0.2 -
0.0

)

f

T T T — T T 1
0 1 2 3 4 5 6 7 8 9 10 11
Size parameter o

FIG. 2. Variation of f}(a) with size parameter, n =0, 1, and
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FIG. 3. Variation of g!(a) with size parameter, n =0, 1, and
2.

cutoff edge centered at n~a—2, while for gl(a) a
minimum is found at n =a—2.

As the Riccati-Bessel functions obey recurrence rela-
tions, these may be employed to ﬁnd similar formulas be-
tween fXa), fX(a) and gX(a), g¥(a). Such relations are
derived in Appendlx B. For the present purpose, the
most important formulas are

fAa)=fAa)=0, Q7
glAa)=g%a)=—1, (28)
fla)=2 2 (4k +2n+3)j2 k11 (@), (29)
k=0

ra | —

fn(a) on +lfn_]( )+2 +1fn+1(a) (30)
g'}(a)=_ﬂ+_l

2a

+2 E (4k+2n +3)j,,+2k+1(a)nn+2k+1(a) )

k=0
31)
=1\ 2n n+1
&)= e T e @Ot o +1g"+1(°‘)‘
32)

Note that the pole in E,:(a) has been separated, and the
apparent pole in g!(a) is canceled by terms present in the
summation. The f!(a) and f)(a) functions have the
form we require. Returning to Eq. (24), we impose the
Rayleigh-Debye limit ¥y —0 to obtain
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1.2,

LO 4%
08
S
= 0.6 . .
04 Y
0.2 N .
Q()j N *} > fl(l(:) -
0 2 4 6 8 10 12 14
Ordern
FIG. 4. Variation of f,(a) with order, a=1, ..., 10.
yFaa)
tanu, =~ ——————
1+7vg,(a)
(n+1f} _(a)+nfli(a)
:7’{ n—1 Sn+1 }_'_0(7/2)’
2n+1)(1+A4A,)
(33a)
where A, =[2ny /(2n +1)a] and
tanv, =y fl(a)+0(y?) . (33b)

These are the first order approximations. The A, term
arises by including the effect of the pole in g,(a). It is
now apparent that the Rayleigh-Debye limit is a sufficient
condition for u,, v,—0, with the criterion that both
yfila) and 7ylgi(a)<0.05. The reduced Mie
coefficients may be written as

(cy)i=—iy{(k,) f @)= (A,) [l ()}, (34)
where

(k,),= (2n+3)a+2ny ,

2n+3)a+2(n+1)y
(A, )= (n+2)2n+3)a+2(n+1)(n+3)y ’
(n+2){(2n+3)a+2(n+1)y)

and

(en )= =17 [l )y f @)+ (A ) f )4 (@)

—(u, |1fn+3 al)l, (35)

with

(K, )y=—na
o 2Qn+1a+2ny
(A ) = nt1)2n +3)a’+2(5n%+11n +3)ay +4n(2n +3)y?
ol (n+1D{Q2n+Da+2ny}{2n+5)a+2(n+2)y}
(e = (n+3)a

Qn+5a+2n+2)y °
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213) 2n(4)

al@)

0 2 4 6 8 10 12 14 16
Order n

FIG. 5. Variation of g,!(a) with order, =1, ..., 10.

Equations (34) and (35) are applicable for all values of a.
They can be simplified further by specifying the condition
a < 1 which ensures that j,(a) decays monotonically with
increasing order. Then jX(a)>>j2, (a), and, by Eq.
9), fia)>>fl,,(a)

The Gegenbauer coefficients are now

(c.) ~—i2 (2n+3)a+2ny
n'L YV 2n+3)at2tn+1)y

X(2n+3)j2 (@) + 02 5(a), n=0  (36)

and
(co)y= —i30y ;‘a—*ﬁt?’? A +0Ga), (72
——: na .2
(en)y= lzyl(2n+1)a+2n‘y ](2n+l)],,(a)
+0( (@), n>1. (37b)

Even these restricted Mie coefficients differ from the
equivalent Rayleigh-Debye values of

—_ 6va .2 >
(d,), l———L3a+27(2n+3)]n+l(a), n>0 (38)

and

(do)“=_ 'M 'Z(a) >

! 3a+2y J2 (39a)

—i—ﬁ&nj,%(aHO(j,%H(a)), n>1, (39b)

(dy )y~ 3a+2y
although (dy),=(cq), and (d;);=(c,), when second or-
der and higher terms are neglected. Nevertheless, the
leading terms of the two sets (c, ), and (d, ), are in agree-
ment when y /a=(m2?—1)/2—0. Thus the criteria for
the application of the Rayleigh-Debye (RD) theory to
spheres are a <1 and ¥ /a—0.

A cutoff condition similar to that of the general sphere
exists for the reduced Mie theory. This is evident from
the behavior of f,!(a) with increasing orders, as displayed
in Fig. 4, and can be made explicit by the asymptotic ex-
pression

e(2n+1)(tanh§~§)

fg)y=2" " " 40
Ay Ty “0)

where coshf=(2n+1)/2a. As for the general sphere,
nco =a + 2.

VII. SCATTERING PATTERNS

The scattered irradiance is proportional to the square
of the scattering amplitude, hence we let

k2r2

K — 2
H, H(z)=|S(2)|

I(z)=
= 3 c.ciTL(z2)TNz2), (41)
m,n=0
in which Eq. (7) has been applied. But this function also
may be expressed as a Gegenbauer series

I(z)=3 C,TNz), (42)
1=0

due to the relation that exists between C; and c,, ¢,
terms. This may be obtained by examining the product
space of Gegenbauer functions which shows that the
decomposition of a product can be carried out by

m+n

S AMTN2), (43)

I=|m—n]|

T)(z)TXz)=

where the summation variable / changes in increments of
2. An expression for the product coefficients may be ob-
tained as a special case of those derived for the products
of Jacobi polynomials [11], and yields

A= (21+3) (s+1Ms=+2) (2a+2)
! 41+1)1+2) (2s+3) alla+1)!
(2b+2) (2c+2)
x bIb+1) clc+1) (44)
where s={U+m-+n)/2, a=m-+n—1)/2,

b=(+m—n)/2, and c=(I+n—m)/2. Each product
term T\ (z)T)(z) generates n+1 terms, T} _,(z),
T) _,.,(2),..., T}, (z) when n <m as is shown in
Fig. 6. The coefficients C; of the scattering patterns
therefore have contributions from various c,,c,” product
terms starting from a leading set, as is illustrated for
C,;T)(z). Particular relations are

Co=3 le, 1242, (452)
n=0

Ci=2Re |3 c,cr  Ar"THL, (45b)
n=0

C,=2Re | c,crAP" 21+ 3 lc, 124%™,  (45¢)
n=0 n=1

C3;=2Re{ I c,of 45" "3
n=0

(45d)

+2Re{ S cpep Ayt L.
n=1

As an example we consider the scattering pattern in per-

pendicular polarization of a RD sphere with a=1. The

cutoff condition nco~a+2 indicates that we need only
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FIG. 6. Decomposition of the leading T, (z)T\(z) products
into T}/(z) terms. Contributions to C;T}(z) are shown bold.

to consider amplitude coefficients ¢y up to c¢;, giving a
4 X 4 coefficient table. Referring to Eq. (34), we examine
fla) and obtain

fola)=0.545, fl(a)=~0.039,

Fia)=1.14X1073, fl(a)=1.84X107°.

However, the pattern coefficients depend on f(a)f . (a)
terms  giving a rapidly reducing sequence
Cy>C;>C,>Cj;, and hence we need consider C; up to
I=2 only. The scattering pattern therefore can be
represented by

I1,(z2)=CyT}(z)+C, T (2)+C,Ti(z), (46)
where

Co=7*{(Ko)uf (@)},

C=27%kok)) f o) f L),

Co=7y2{£[(k) S 1 (@) +2(kgir) f o (@) f 3 ()},
since 49°=A49"'=4%92=1 and A}'=¢. This shows

that the effective pattern table is 2X3, and suggests a
general cutoff criterion for scattering patterns of

2a—1<igg <2a+1. (47)

The number of terms in the scattering which can be
determined experimentally will, of course, depend on the
sensitivity of the instrument. Iy and ng only specify
the orders at which the pattern and amplitude coefficients
are small compared with lower order contributions.
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VIII. DISCUSSION

The application of Gegenbauer analysis to light
scattering from homogeneous spheres has shown that the
Mie and Rayleigh-Debye theories can be formulated in
terms of Gegenbauer functions. This allows a theoretical
comparison to be made between the two treatments.
From the analysis, it has been demonstrated that for
Rayleigh-Debye scattering to be valid an upper limit of
a <1 must be placed on the particle size as well as the
usual phase condition 2y ~(m?—1)a <<1. Under these
conditions, the dominant amplitude terms is the same in
the two theories, but other terms differ. The reduced Mie
formulation is preferred for Rayleigh-Debye spheres
since it is based on the rigorous application of elec-
tromagnetic theory and the particle size is unrestricted.
Although the Rayleigh-Debye equations are simple, this
simplicity cannot be used to justify their possible use, as
only a few terms of the scattering pattern need be calcu-
lated when a < 1.

An attractive and powerful feature of the Gegenbauer
formulation for the more general case of spheres of arbi-
trary size and refractive index is the ability to convert ex-
perimental scattering patterns I(z) to a set of coefficients
by the integration

c—__ 2+3
U+ 1)1+2)

where z =cos?. The Gegenbauer spectrum of the pattern
may then be generated by plotting the coefficients against
order. Examples of computed scattering patterns for
spectra are illustrated in Figs. 7-9. Despite the
difference in the appearance of the patterns and their
spectra, the two modes of representation are complemen-
tary and contain the same information. This follows
since I(z) and the set C; constitute a Gegenbauer trans-
form pair. Accordingly, I(z) can be reconstructed by the
inverse transform I(z)=3,_,C,;T}(z). In general, the

f_ll(l—z2)l(z)T,1(z)dz, 48)

Scattering Irradiance

0 30 60 90 120 150 180
2 3 4 5. 6 7

Angle (deg)
X (
L
0 1
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FIG. 7. (a) Angular scattering pattern and (b) Gegenbauer
spectrum for particles a =S5, =6, and y=1.1.
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FIG. 8. (a) Angular scattering pattern and (b) Gegenbauer
spectrum for particles a =10, =12, and y =2.2.

spectra plots have simpler structure and require fewer
data points than the scattering patterns. They also exhib-
it a high-order cutoff /- from which the external size pa-
rameter can be deduced.

For computed scattering patterns, the most direct pro-
cedure for calculating Gegenbauer spectra is from the
Mie multipole coefficients a, and b, through Egs. (12)
and (45). Spectra derived from experimental data, on the
other hand, can be obtained by integral (48), and intro-
duce an instrumental factor for converting the scattering
irradiance H%(z) into the scattering function (z):

N 105y T:hﬁ:ls;yﬁj o
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Order
FIG. 9. (a) Angular scattering pattern and (b) Gegenbauer
spectrum for particles a=15, =18, and y =3.3.
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k2r?

I(z)= H,

Hz) .

Evaluation of the instrumental factor is possible either
from the instrument parameters or by conducting experi-
ments on standard spherical reference particles. Yet
another complication in the implementation of Eq. (48)
arises from missing data near 0° and 180°. However,
analysis shows that the effect of omitting data in the
ranges O to ¢, and m— 3 to 7 is to superimpose a high-
order ripple given by —33J,(19,)/(1,), when [ is large,
on the Gegenbauer spectrum. Such a ripple can be
detected for I/ > /g and subtracted by fitting forward and
backward scattering to the forms A -+ B sin*($/2)
+Csin*(#/2). Further processing may also be intro-
duced to eliminate random noise in the scattering pattern
having high-order angular periodicity. The accuracy of
the final spectra will clearly be highest when quasicon-
tinuous scattering patterns are available.

A cutoff order 2a—1< /-5 <2a++1 is introduced from
the present analysis, but numerical studies have shown
that /oo =2.1a+0.12, which is hardly affected by the
particle’s refractive index. This allows the direct deter-
mination of particle size. Particular equations for the
cutoff order will, of course, depend on the cutoff criterion
used.

The number of terms in the scattering pattern which
can be detected experimentally will depend on the sensi-
tivity of the instrument as well as the particle properties.
The amplitude and pattern cutoff orders ngg and I
only specify the orders at which the coefficients are small
compared with lower order terms. This raises the possi-
bility of a complete inversion of the scattering pattern.

We consider first the case of Rayleigh-Debye spheres.
For perpendicular polarization, Eq. (48) yields

fil@ 3 (3+2m?) G 49)
fi@) 2 2+m?)(4+m?) C,
and
1 —
- 3af0(a)+4\/3) ’ (50)
3afla)—2v/C,
in which
file) _ l+sinaf{cosa—(2sina)/a}/a (51)

fia) 1 —(sina cosa)/a

varies monotonically for a <2. Hence a and m may be
determined iteratively by starting with an initial value of
m =1. A further equation

f1l@) _ (4+m2)4+3m?)
fia) B+2mH)(5+2m?)

offers a useful check on the presence of experimental er-
rors or deviations of the particle from the Rayleigh-
Debye sphere model.

A similar analysis for parallel polarization to that in
Sec. VII leads to

c, 3C
Cc, 10C,

(52)
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I,=C,Ty(z)+C,T{(z)+C,T5(z)

+C,Ti(2)+C,T(2), (53)
where
Co=3C=3{rlk)) |f0(a)}
C =—&~=ﬁy2(x ) fola)f Ha
3 12+(}‘0/K2)H 7 %2/ J o 1
Co=v {21 f 1) P+ Sk yy) f (@) f S (@)} .

The coefficients now follow the sequence Cy=C,>C,
> C, > Cy, and the iteration equations are

file) _ 7 3+2m?) Cs (54)
fia) 20 24+4m? C,
and
1 _
mi= 3af°(a)+4‘/_5&’ . (55)
3afila)—2V/5C,
Additional relations
&=l(8+7m2) (56)
c, °
and
f3@ 1 (4+3m? [18 Ca Gy | 57
fHa) 4 3B+2m>» |7 C; C,

may also be obtained.

The direct inversion of Rayleigh-Debye spheres is pos-
sible due to the imaginary amplitude coefficients and the
rapid reduction of their magnitudes with order. In the
case of the general sphere such conditions apply only
near or above cutoff. Below cutoff the coefficients are
complex and vary erratically in magnitude with order. If
the instrument limits the coefficients to
Cos--+>Cxs> .-+ ,Cy, in Which the first £ +1 are complex
and the last N —k are imaginary, then the number of un-
known variables to be found is kK +N +2. This should be
compared with the number of experimental values 2N + 1
of Cy,...,C,y. Thus the amplitude coefficients can be
determined from Eq. (45) when N>k +1.

The equations unfortunately are not linear in ¢, but in-
volve products ¢, c,; +c¢, ¢c,,, so that optimum algorithms
for solutions will need to be investigated. Favorable
factors are that (a) a reasonable value for a is
known from Icq; (b) the highest order coefficients have
simple  relations, e.g., Con=A%Neyl?  and
Con—1=2Re{ ANy 1¥cp _icy}; and (c) asymptotic ex-
pressions are available for the highest order amplitudes.

Once the ¢, coefficients are obtained the multipole
coefficients @, and b, may be found prior to determining
best fit solutions of a and B from Egs. (13) and (14).

This paper concerns the theory and application of
Gegenbauer analysis to light scattering from homogene-
ous dielectric spheres. The treatment is also applicable to
absorbing and layered spheres. Other papers are in
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preparation covering studies based on theoretical and ex-
perimental scattering patterns.

APPENDIX A

The properties of Riccati-Bessel functions are as fol-
lows.
(a) Definitions

1/2
b(D=2j,@D)= || Ty,

172
Xn(2)=2zn,(z)= % N, 11(2) .

(b) Recurrence formulas

2n+1)¢,(z)=z{¢,_(2)+,(2)}, (A1)
d = _n
o d,(2)=6¢, _,(2) Zd),,(z) ) (A2)
d +1
e MO E E) (A3)
if ¢,(z)=1,(z) or X,,(z) or any linear combination of the
two.
(c) Wronskian
d _
1,0,,(2) X,,(z (z) a4z Y,(z)=1 (A4)
or, by using Eq. (A2),
¢n(Z)Xn-—1 z)— ¢n-l (AS5)
(d) Multiplication theorem
(—p)k
¢n ¢n ma) n+1 2 ¢n+k(a) , (A6)
k=0
where y =(m?—1)a/2.

() Products. If we let A=my,(B),(a)

—v,(B)d, (), then, by Eq. (A2),
4= m¢n—1 ¢n ¢n(ﬁ)¢n~1(a) (A7)
On substituting (A6) into this, we obtain
(A8)

A= n+12 __LBk(a),
=0

where

BXa)=1, 11 _(a)d,(a)

For particular ¢,(a),
ka)
gka)

In the case of A=1v,(B)¢,(a)
rangement gives

_¢n +k(B)¢n—1(a)

¥, ()
= xata) .

—my,(B),(a), rear-

BKa)= when ¢, (a

=—-(A c), (A9)

where
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C=(m?—1)¢,(B)¢,(a) (A10)
This may be expanded using Eq. (A6) as
C=m""! z —?’—J’—smk (@)} (@)
k
——mrtt s W2k, @dla@) . (ALD
k=0 a
Hence
2 —7’—Bk(a) (A12)
in which
Bia)=Bia+2y, , (@))(@) .
For particular ¢, (a)
5k Fia) ¥,(a)
(a)_ __k( ) when ¢n(a)= Xn(a)
(f) The scattering functions
(B, (a)—my, (B, (a)
tanu=¢ By, (a)=m i, (B, (A13)

"B, (@) —m, (B, (a)
has a numerator and denominator of the form of 4, so
that

3 X
tanu, = k:o . (A14)
2 ——,J,ign( )
k=0 :
Similarly, the function
canp. = my, (B, (a)—¢, ()Y, (a) (A15)

Yomy(Bx, (@)=, (B, (a)

has a numerator and denominator of the form of A.
Hence

tanv, = (A16)

APPENDIX B

The properties of scattering functions are as follows.
(a) Recurrence formulas of BX(z). The argument of all
functions is z. Starting with

Bti(=¢n+k—l¢n_¢n+k¢n‘l > (B1)

a downward recursion of ¢, and ¢, _;, using Eq. (Al),
gives

=Bkt  (B2)

Brlf: (2nz_3)Bf+

2
_z—ll}n+k—1¢n—1+

and
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BE= T akby ot B —BET L (BY)
From these we derive
%¢n+k¢n =B:+1_%Bk+l+3rfjlz (B4)
and
2 int, =B =2 gl gk ()

An upward recursion of ¢, ., and ¥, ., _, in Eq. (B1)
also leads to

2 —
z ¢n +k¢n

This can be combined with Eq. (B4) to give the re-
currence relations of BX(z) as

—Bk—B}*2 .

2
Bft24+Br 2= ~@n+k +3)Bf—(Bf, +Bf,,) .

(B7)

(b) Recurrence formulas of fX(z). When ¢,=1,,

Bj=/f, and f}=0,
fn+k _fn . (B8)

Various equations can be generated for particular values
of k from Egs. (B4) and (BS5) using (B8), e.g.,

2 2 2 __(2}1—‘1)

Y =fn- : B9
z’/’n n—1 fn ’ ( )
2y Lg"—+~3-)~f —fi> (B10)
z z
2
“Uutn1=Fa—fus1 (B11)
and
2 (2n
;¢n¢n+1 fn—l f3+fn+1 . (B12)
From Eq (B11), we have f,,+1 T =2/2), 11
and f)—f!,,=(2/2)¥,¥, +,, which are summed to ob-
tain
1_p1 2
fn_fn+2—_z_{¢n+¢n+2}¢n+l
L(Z +3) (B13)
) n ¢n+1

by using Eq. (A1). Thus f,! may be written as a series

=2 2 S (s +2n+302 4 0ss s (B14)

s=0

which is always positive. In a similar manner the re-
currence relations within Eq. (B7) lead to

f,,=% § (—1¥@2s+2n+3)f 01 s (B15)
s=0
f,§+f,}+1=% i (—1YQ2s+2n+4)f2 11 (B16)
5s=0
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and

NN

fiyrfr = 2 1S2s+2n+5)f3,, 41 - (B17)

General expressions for f¥ are complicated, so we will
examine f ,} only. This is defined as

_ 2 ,
Fa=fi+ ~Yntn
or

(B18)

Fl_r1y 2 _n
fr}—fr}+z¢n 1/Jn~1 zdjn

by Eq. (A2). The application of Egs. (B11) and (B13) then
gives

=1 (n+1)
= _ . B19
fn (2 +1 fn 1 (2n+l)fn+1 ( )
(c) Recurrence formulas of gX(z). When ¢,=x,,
Bk g,,,and
8=V tXn—YuXp1=—1, (B20)
+
gite i =— 2’-’;—1 : (B21)
Letting k=—1 in Eq. (B4), and using Egs. (B20) and
(B21), we have
2 - (2n —1)
_¢n—1Xn=gn-|}1+gnl—l+—
z z
=8n—1 —g,}—% : (B22)
Thus
1 T 2 2
gn_gn+1_?{1+¢an+l}_;¢n+1Xn (B23)
and
2
&n+1 _gr}+2=—z_{l+¢n+an+2} ) (B24)
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which may be summed to obtain

(2n +3)
8r—8ni2= [ —_‘1/’n+1Xn+1 l . (B25)
A more convenient form of this equation is
(2n +1) (2n +5)
[&HT - [grll+2+T ’
2
=—7(2n +3), 1 Xns1, (B26)

giving a series solution

__2n+1 2

n +— D (As+2n 430 4y 1 X540 +1 -
2z 27 s=0

(B27)

Other functions may be obtained from the recurrence re-
lations

(2n +3)
g3+g3+1=2{1+—~z—g,}+1] , (B28)
(2n+4)
g tgli1= g 1 —(gr 1 Hgr2), (B29)
and
(2n +5)
8n+8n+1 =2— 3+1_(83+1+83+2) . (B30)
For g,,‘, we have §,} =gl+(2/z W,x, and
— 2 n
5. =gt Y, ’X,,—l—;x,, ] , (B31)

using Eq. (A2).
then yields

2n n—+1
(2n+1)z  (2n+1)

The application of Egs. (B23) and (B25)

&= 811 T Ty 8 - (B3
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